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ABSTRACT 

The gene co-expression analysis and clustering 

concept were utilized to identify possible genes 

present in the withanolides biosynthesis 

pathway. Weighted Gene Co-expression 

Network Analysis (WCGNA) was carried out to 

identify putative genes. The identified known 

genes were used as bait to locate the co-expressed 

genes among them in identified modules in 

WGCNA analysis. As cytochrome P450s and 

glycosyltransferase (UGT) are candidates for 

withanolide biosynthesis in the literature, the 

study was focused on identifying CYPs and UGT 

genes. Finally, the study was able to locate 6 

CYP genes and 1 UGT gene as putative candidate 

genes involved in the withanolides biosynthesis 

pathway. However, in silico characterization 

should be carried out for further isolation 

processes. 

1. INTRODUCTION 

Secondary metabolism facilitates primary 

metabolism and ensures that all metabolic 

pathways are assisted with the required 

regulation and coordination for the long-term 

persistence of the plant (Crozier et al., 2007; 

Nikolić et al., 2012). The resulting metabolites 

are secondary or specialized and are crucial 

components actively participating in plant 

defense mechanisms, hormonal regulation, 

enzyme catalytic functions, signaling 

coordination, and are even responsible for the 

plant's structure, vigour, and colour 

characteristics. Therefore, secondary metabolites  

 

are intermediate and promote growth and 

development but are not required for survival 

(Piasecka et al., 2015; Seca & Pinto, 2019).  

Plant synthetic biology, transcriptomics, 

genomics, proteomics, metabolomics, and gene 

function prediction have all had a significant 

impact on identifying secondary metabolite 

biosynthetic pathways in plants (Zhang et al., 

2017; Jacobowitz & Weng, 2020; Mutwil, 2020; 

Nützmann et al., 2016). These methods enabled 

the elucidation of unknown genes and enzymes 

in many plants’ secondary metabolite 

biosynthetic pathways and de novo biosynthetic 

pathway prediction in many non-model plants 

(Tissier, 2012). The production of secondary 

metabolites is restricted to specialized organs, 

tissues, and different cell types. Moreover, these 

are regulated via different environmental 

parameters such as drought, salt resistance, or 

regulations via chemical elicitations like salicylic 

acid and methyl jasmonate (Wang et al., 2016). 

Therefore, the enzymes and their corresponding 

mRNAs should only be present in the cells where 

the specific metabolites are produced innately. 

These sets of genes co-regulate specific 

biological functions. This assumption has been 

exploited to identify biosynthetic genes by 

employing different gene expressions, gene co-

expressions, and metabolite levels in omics 

technologies, and this is known as gene co-

expression, which is based on the guilt by 

association principle (Gillis & Pavlidis, 2012; 

Saito et al., 2008; Yonekura-Sakakibara et al., 

2008). This assumption was successfully proved 
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for fatty acid identification in tomato plants (Jeon 

et al., 2020). Once the known genes and their 

gene expressions are identified, they can be 

employed to uncover other unknown genes with 

a similar expression profile (Serin et al., 2016; 

Usadel et al., 2009). Several studies have pointed 

out that genes with similar expression patterns in 

different organs and developmental stages as 

well as biotic and abiotic agitations tend to 

involve similar biological processes (Dugé de 

Bernonville et al., 2017). 

Gene clustering is highly employed in modern 

RNAseq studies (de Bernonville et al. 2020). 

Genes that form a cluster of genes display 

relative gene expression across the samples or 

conditions. In most gene clusters, genes 

responsible for specialized metabolites like 

secondary metabolites are located together in the 

genome. These were found in plants like Zea 

mays (Frey et al., 1997), rice (Yang et al., 2004), 

tomato (Akthar et al., 2013), and potato (Itkin et 

al., 2013). Therefore, the Gene Co-Expression 

Network Analysis (GCNA) method is commonly 

used in transcriptome-based gene co-expression 

networks (Higashi & Saito, 2013). It is a genetic 

approach to analyzing correlated and applicable 

genes in functional modules and phenotypic 

traits (Serin et al., 2016). There are numerous 

tools to analyze gene co-expression analysis. Of 

those, WGCNA is one of the most common 

GCNA-based approaches to identifying 

clustering genes in different metabolic pathways 

(Langfelder & Horvath, 2008). It is an R software 

package that uses a correlation of gene 

expressions for describing and visualizing data 

point networks related to gene networks 

(Langfelder & Horvath, 2008; Yao et al., 2019). 

It is used to find biosynthesis pathways and genes 

that significantly impact those pathways. 

Moreover, this method can be employed to 

predict unknown genes and regulatory factors 

through the known genes in the networks. The 

crucial genes are named hub 

genes. Modules created in this WGCNA method 

are defined as clusters of highly interconnected 

genes. The number of genes found in whole 

genomic expressions is reduced by gene modules 

(Tai et al., 2018a). Each gene module consists of 

genes with the same function or similar 

biological regulation (Langfelder & Horvath, 

2008). When the genes are annotated, like Gene 

Ontology (GO) enrichment and Kyoto 

Encyclopedia of Genes and Genomes ( KEGG) 

pathways, that information can be related to 

modules to identify the hub genes and their 

modules. That would quickly lead to identifying 

interconnected and correlated modules. Hub 

genes enable the exploration of complex gene 

traits. This process will reduce the amount of data 

that needs to be processed, thus saving time. This 

method was extensively used in studies (DiLeo 

et al., 2011; Jia et al., 2021; B. Yu et al., 2020) 

and mainly in plants like tomato (DiLeo et al., 

2011), soya bean (Gao et al., 2018), strawberry 

(Hollender et al., 2014) and tea (Tai et al., 2018). 

Moreover, Zheng et al. (2019) identified genes 

related to the expression pattern of the epidermal 

wax pathway in maize plants. This method was 

also utilized to identify hub genes related to 

abiotic drought stress-induced pathways in 

papaya plants (Gamboa-Tuz et al., 2018). 

Finally, this is one of the easiest methods to 

identify critical genes in interesting biological 

functions or synthesis pathways. 

Withanolides are naturally occurring secondary 

metabolites that predominantly occur within 

plants of the Solanaceae family, especially the 

subfamily Solanoidea accounting for higher 

medicinal and economic importance (Chen et al., 

2011; Dhar et al., 2015; Glotter, 1991). 

Withanolides are subdivided into nine 

withanolides, withaphysalins, physalins, 

nicandrenones, jaborols, ixocarpalactones, 

perulactones, acnistins and miscellaneous 

withasteroids (Misico et al., 2011). Withanolides 

are synthesized via mevalonate (MVA) and non-

mevalonate (MEP/DOXP) pathways in the 

cytosol and plastids, respectively (Chaurasiya et 

al., 2012b; Dhar et al., 2015). The Withanolide 

biosynthesis pathway was elucidated up to 24-

methyldesmosterol via 24-isomerase (EC 5.3.3), 

which catalyzes the conversion of 24-

methylenecholesterol to 24-methyldesmosterol 

(Chaurasiya et al., 2012b; Gupta et al., 2013, 

2015). No genes were identified after this step. 

Studies have pointed out that cytochrome P450 

mono-oxygenase (CYP450s) and UDP-

glycosyltransferases (UGTs) govern the 
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hydroxylation, oxidation, and glycosylation 

steps, yielding withanolides (Agarwal et al., 

2017; Gupta et al., 2015; Senthil et al., 2015; 

Tripathi et al., 2016). However, the essential 

genes related to withanolide biosynthesis in D. 

metel have not yet been identified. Genes related 

to CYP450s and UGTs in plants are essential to 

the diversification of withanolides structures. 

RNA seq and other sequencing techniques 

provide a better opportunity to identify these 

possible candidates. Once these genes are 

identified, their synthesized proteins can be 

characterized via in silico and in vivo 

characterization methods. The objective of this 

paper is to isolate potential CYP450 and UGTs 

genes that might be involved in the biosynthesis 

pathway of withanolides in D. metel by using 

WGCNA analysis methods for the sequenced 

data. 

2. METHODOLOGY  

2.1 Transcript Quantification 

Transcript-level quantification was performed to 

estimate gene and isoform expression levels 

from D. metel RNA-Seq data. The RSEM 

software package was used for this process. 

Initial sequencing reads and a de novo assembled 

transcriptome of D. metel were processed in this 

RSEM program to quantify the expression from 

transcriptome data. It aligned the reads against 

the reference annotated transcriptome and 

calculated relative abundances using the Bowtie2 

aligner program within the RSEM program. The 

results provided the isoform level and gene level 

quantified tables called count tables 

2.2 WGCNA Analysis 

The WGCNA enables the identification of 

modules of highly correlated genes and hub 

genes with important effects in the withanolide 

biosynthesis pathway. Genes that were 

differentially expressed from the Differently 

Expressed Gene (DEG) analysis (7888 genes) 

were normalized, and their gene expression 

values (FPKM) were used as the input for 

WGCNA analysis in R software (version 4.0.5). 

WGCNA network construction and module 

detection were conducted using a signed 

topological overlap matrix (TOM). The soft 

power value is 18, the minimum module size is 

30, and the merge cut height is 0.25. Each module 

was identified by color. In each module, the most 

significantly correlated genes with a WGCNA 

edge weight of 0.1 were visualized using 

Cytoscape 3.5.1 software. The most highly 

connected nodes within the module, known as 

"hub genes", were identified for each module. 

Functional analysis of the modules was carried 

out using Gene Ontology Enrichment. Further, 

the distribution of identified critical genes 

involved in the withanolides biosynthesis 

pathway in the modules was screened (Figure 

01). Then the CYPs and UGTS co-expressed 

with known genes were identified as potential 

genes. KEGG pathway analysis was also 

performed on the modules. 

2.3 Candidate gene selection based on the co-

expressed gene expression criteria. 

Due to the known localization of the metabolic 

pathway to leaf tissue, any gene not expressed in 

the leaf can be discarded. Moreover, the leaves 

elicited with SA allow us to identify the 

upregulated genes upon SA induction. The 

Withanolide biosynthetic pathway responds to 

SA elicitation (Dasgupta et al., 2014; 

Sivanandhan et al., 2014), and therefore, genes 

that are preferentially expressed in response to 

SA elicitation are preferred candidates. The 

upregulated genes in the DEG analysis were 

further selected by co-expression analysis. Co-

expression selection was based on gene 

discovery, utilizing the spatial proximity of genes  

on the genome that act as physical clustering of 

genes in secondary metabolism in plants. These 

methods are currently employed to identify 

candidate genes in specialized metabolism in 

several plant species (Nützmann et al., 2016). 

Unigenes identified in each co-expression 

method were clustered together using a Venn 

diagram using Omics Box (2021). Unigenes co-

expressed together or at least present in two co-

expression methods were selected as the final 

possible candidate genes in the withanolide 

biosynthesis pathway for the 

D.metel transcriptome. 
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Figure 01: Known genes in Withanoloids 

Biosynthesis pathway 

 

3.0 RESULTS AND DISCUSSION 

There were 6 gene co-expression modules 

(Figure 02) identified under WGCNA method. 

The number of genes in the module ranged from 

125 (Red) to -3403 (Turquoise). The cluster 

dendrogram generated (Figure 03) represents 

how all DE genes are distributed among 

modules. Each branch of the clustering tree 

represents a module with a different colour. Each 

leaf displays a gene. The correlation coefficient 

of the modules with each other represented the 

module relationships (Figure 04). Known genes 

present in the withanolide pathway were 

assessed, and they were mainly distributed to 

yellow, blue, and brown modules, respectively. 

Once the known genes were identified, CYP450s 

and UGTs were identified that co-expressed with 

the known genes in each module (Table 01).  

Moreover, enriched CYP450 and UDP-GT were 

also investigated in three interesting modules. 

Unigenes that encode for CYP450, and UDP-

GTs and their modules are given in Table 01. 

Their gene expressions were evaluated, and 

higher gene expressions were selected as 

candidate genes for withanolide production. 

KEGG pathway analysis revealed that brown and 

yellow modules consist of steroid and 

brassinosteroid, and triterpenoid biosynthesis 

pathways. Therefore, higher attention was given 

to examining those modules.  

 

Figure 02: WGCNA modules identified for 

DEGs in D. metel transcriptome. The yellow 

module consisted of more DEGs while the red 

module for a smaller number of DEGs. No genes 

were observed in green module. 

 

Figure 03: Known genes for withanolide 

biosynthesis pathway present in modules blue, 

brown, and yellow modules. 

Table 01: Identified genes for further studies 
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Figure 04: Correlation coefficient of modules 

with each other. Correlation 1 represents the 

higher module relationship while 0 represents the 

lower module relationship with each other. 

Unigenes identified in WGCNA Unigenes co-

expressed together or at least present in two co-

expression methods were selected as the final 

possible candidate genes in the withanolide 

biosynthesis pathway for the D. 

metel transcriptome (Table 01). 

 

4.0 CONCLUSION 

Genes named DM483, DM472, DM2774, 

DM8039, DM7998, DM399, and DM4536 

were identified as potential candidate genes for 

the withanolides biosynthesis pathway in D. 

metel leaf and flower tissues. The isolated 

genes were further characterized via in silico 

methods, phylogenetic trees, and multiple 

sequence alignment methods. This study shows 

the significance of using WGCNA analysis on 

identifying key modules and hub genes in 

Withanolides biosynthesis pathway in 

medicinal plants. However further in silico and 

in vitro characterizations are needed to carry on 

to confirm the genes functions and phenotypic 

expression in withanolides production in 

D.metel plants.  
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